Efficient priming of protein antigen–specific human CD4 + T cells by monocyte-derived dendritic cells
Blood, ISSN: 0006-4971, Vol: 96, Issue: 10, Page: 3490-3498
2000
- 72Citations
- 55Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Dendritic cells (DCs) have the unique ability to initiate an immune response in vivo by capturing antigens (Ags) in peripheral tissues and migrating to secondary lymphoid organs, where they sensitize naive CD4 + T cells. To mimic this process in vitro, previous studies have shown that DCs directly isolated from peripheral blood can be used to elicit primary responses to neoantigens (neoAgs). In other studies, when monocyte-derived DCs have been utilized to sensitize total CD4 + T cells in vitro, only secondary proliferation to neoAgs could be elicited. In the present study, the relative abilities of CD40 ligation, protein kinase C activation, and culture in tumor necrosis factor α (TNF-α) to induce functional and phenotypic maturation of human DCs from monocyte precursors were compared. Optimal TNF-α–induced maturation of DCs required a prolonged 4-day culture. It was then found that loading immature DCs with the neoAgs keyhole limpet hemocyanin or human immunodeficiency virus-1 p24 gag prior to TNF-α–induced maturation, rather than after maturation, was crucial to sensitize CD4 + T cells to new Ags. This primary proliferation to neoAgs was initiated from the CD4 + CD45RA + naive T-cell population. Finally, it was found that monocyte-derived DCs acquired the ability to secrete interleukin-12 p70, after contact with Ag-specific T cells. The ability to prime and expand Ag-specific CD4 + T cells ex vivo to neoAgs in serum-free conditions has potential application for cellular vaccination and adoptive immunotherapy.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006497120482898; http://dx.doi.org/10.1182/blood.v96.10.3490; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0034670014&origin=inward; https://ashpublications.org/blood/article/96/10/3490/181012/Efficient-priming-of-protein-antigenspecific-human
American Society of Hematology
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know