Signal transduction pathways involved in soluble fractalkine–induced monocytic cell adhesion
Blood, ISSN: 0006-4971, Vol: 97, Issue: 7, Page: 2031-2037
2001
- 82Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations82
- Citation Indexes82
- 82
- CrossRef69
- Captures28
- Readers28
- 28
Article Description
Fractalkine displays features that distinguishes it from the other chemokines. In particular, besides its chemoattractant action it promotes, under physiologic flow, the rapid capture and the firm adhesion of a subset of leukocytes or intervenes in the neuron/microglia interaction. This study verified that indeed the human monocytic MonoMac6 cell line adheres to fibronectin-coated filters in response to soluble fractalkine (s-FKN). s-FKN stimulates, with distinct time courses, extracellular signal-related kinases (ERK1 and ERK2) and stress-activated protein kinases (SAPK1/JNK1 and SAPK2/p38). Both p60 Src and p72 Syk were activated under s-FKN stimulation with a rapid kinetic profile compatible with a downstream regulation on the mitogen-activated protein kinase (MAPK) congeners. The use of specific tyrosine kinase inhibitors revealed that the ERK pathway is strictly controlled by Syk, whereas c-Src up-regulated the downstream SAPK2/p38. In contrast, the SAPK1/JNK1 pathway was not regulated by any of these nonreceptor tyrosine kinases. The s-FKN–mediated increased adherence of MonoMac6 cells was partially inhibited by SB202190, a broad SAPKs inhibitor, PD98059, an MEK inhibitor, LY294002, a phosphatidyl inositol 3-kinase inhibitor, and a pertussis toxin-sensitive G protein. These data highlight that the integration of a complex array of signal transduction pathways is necessary to complete the full s-FNK–dependent adherence of human monocytic cells to fibronectin.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006497120558096; http://dx.doi.org/10.1182/blood.v97.7.2031; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0035313378&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/11264168; https://ashpublications.org/blood/article/97/7/2031/53418/Signal-transduction-pathways-involved-in-soluble; https://dx.doi.org/10.1182/blood.v97.7.2031
American Society of Hematology
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know