Sampling issues in quantitative analysis of dendritic spines morphology
BMC Bioinformatics, ISSN: 1471-2105, Vol: 13, Issue: 1, Page: 213
2012
- 60Citations
- 119Captures
Metric Options: Counts3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations60
- Citation Indexes60
- 60
- CrossRef47
- Captures119
- Readers119
- 119
Article Description
Background: Quantitative analysis of changes in dendritic spine morphology has become an interesting issue in contemporary neuroscience. However, the diversity in dendritic spine population might seriously influence the result of measurements in which their morphology is studied. The detection of differences in spine morphology between control and test group is often compromised by the number of dendritic spines taken for analysis. In order to estimate the impact of dendritic spine diversity we performed Monte Carlo simulations examining various experimental setups and statistical approaches. The confocal images of dendritic spines from hippocampal dissociated cultures have been used to create a set of variables exploited as the simulation resources.Results: The tabulated results of simulations given in this article, provide the number of dendritic spines required for the detection of hidden morphological differences between control and test groups in terms of spine head-width, length and area. It turns out that this is the head-width among these three variables, where the changes are most easily detected. Simulation of changes occurring in a subpopulation of spines reveal the strong dependence of detectability on the statistical approach applied. The analysis based on comparison of percentage of spines in subclasses is less sensitive than the direct comparison of relevant variables describing spines morphology.Conclusions: We evaluated the sampling aspect and effect of systematic morphological variation on detecting the differences in spine morphology. The results provided here may serve as a guideline in selecting the number of samples to be studied in a planned experiment. Our simulations might be a step towards the development of a standardized method of quantitative comparison of dendritic spines morphology, in which different sources of errors are considered. © 2012 Ruszczycki et al.; licensee BioMed Central Ltd.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84865304568&origin=inward; http://dx.doi.org/10.1186/1471-2105-13-213; http://www.ncbi.nlm.nih.gov/pubmed/22920322; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-213; https://dx.doi.org/10.1186/1471-2105-13-213
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know