IDconverter and IDClight: Conversion and annotation of gene and protein IDs
BMC Bioinformatics, ISSN: 1471-2105, Vol: 8, Issue: 1, Page: 9
2007
- 101Citations
- 109Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations101
- Citation Indexes101
- 101
- CrossRef74
- Captures109
- Readers109
- 109
Article Description
Background: Researchers involved in the annotation of large numbers of gene, clone or protein identifiers are usually required to perform a one-by-one conversion for each identifier. When the field of research is one such as microarray experiments, this number may be around 30,000. Results: To help researchers map accession numbers and identifiers among clones, genes, proteins and chromosomal positions, we have designed and developed IDconverter and IDClight. They are two user-friendly, freely available web server applications that also provide additional functional information by mapping the identifiers on to pathways, Gene Ontology terms, and literature references. Both tools are high-throughput oriented and include identifiers for the most common genomic databases. These tools have been compared to other similar tools, showing that they are among the fastest and the most up-to-date. Conclusion: These tools provide a fast and intuitive way of enriching the information coming out of high-throughput experiments like microarrays. They can be valuable both to wet-lab researchers and to bioinformaticians. © 2007 Alibés et al; licensee BioMed Central Ltd.
Bibliographic Details
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know