A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: A hypothesis of molecular mimicry
BMC Evolutionary Biology, ISSN: 1471-2148, Vol: 4, Issue: 1, Page: 10
2004
- 38Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes38
- 38
- CrossRef36
- Captures43
- Readers43
- 43
Article Description
Background: Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent processes include changes in ion transport and increases of HO uptake into protoplasts and whole tissue. Presentation of the hypothesis: The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306 contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection. Testing the hypothesis: We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved residues between the two proteins within the domain previously identified as being sufficient to induce biological activity. Structural modelling predicts identical six stranded double-psi β barrel folds for both proteins thus supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental proof of molecular mimicry. Implication of the hypothesis: If the hypothesis is true, it could at least in part explain why the citrus pathogen Xanthomonas campestris that does not contain a PNP-like gene produces dry corky lesions while the closely related Xanthomonas axonopodis forms lesions with wet edges. It also suggests that genes typically found in the host, horizontally transferred or heterologous, can help to explain aspects of the physiology of the host-pathogen interactions. © 2004 Nembaware et al; licensee BioMed Central Ltd.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=2942587260&origin=inward; http://dx.doi.org/10.1186/1471-2148-4-10; http://www.ncbi.nlm.nih.gov/pubmed/15038836; https://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-4-10; https://dx.doi.org/10.1186/1471-2148-4-10; https://bmcecolevol.biomedcentral.com/articles/10.1186/1471-2148-4-10
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know