The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus
BMC Microbiology, ISSN: 1471-2180, Vol: 8, Issue: 1, Page: 186
2008
- 54Citations
- 92Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations54
- Citation Indexes54
- 54
- CrossRef37
- Captures92
- Readers92
- 92
- Mentions1
- References1
- 1
Article Description
Background. The lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin acts by complexing the sugar phosphate head group of the peptidoglycan precursor lipid II, thereby inhibiting the transglycosylation reaction of peptidoglycan biosynthesis. Results. Here, we studied the growth of Staphylococcus aureus in the presence of subinhibitory concentrations of mersacidin. Transcriptional data revealed an extensive induction of the cell wall stress response, which is partly controlled by the two-component regulatory system VraSR. In contrast to other cell wall-active antibiotics such as vancomycin, very low concentrations of mersacidin (0.15 × MIC) were sufficient for induction. Interestingly, the cell wall stress response was equally induced in vancomycin intermediately resistant S. aureus (VISA) and in a highly susceptible strain. Since the transcription of the VraDE ABC transporter genes was induced up to 1700-fold in our experiments, we analyzed the role of VraDE in the response to mersacidin. However, the deletion of the vraE gene did not result in an increased susceptibility to mersacidin compared to the wild type strain. Moreover, the efficacy of mersacidin was not affected by an increased cell wall thickness, which is part of the VISA-type resistance mechanism and functions by trapping the vancomycin molecules in the cell wall before they reach lipid II. Therefore, the relatively higher concentration of mersacidin at the membrane might explain why mersacidin is such a strong inducer of VraSR compared to vancomycin. Conclusion. In conclusion, mersacidin appears to be a strong inducer of the cell wall stress response of S. aureus at very low concentrations, which reflects its general mode of action as a cell wall-active peptide as well as its use of a unique target site on lipid II. Additionally, mersacidin does not seem to be a substrate for the resistance transporter VraDE. © 2008 Sass et al; licensee BioMed Central Ltd.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know