Regulated expression of a transgene introduced on an oriP/EBNA-1 PAC shuttle vector into human cells
BMC Biotechnology, ISSN: 1472-6750, Vol: 9, Issue: 1, Page: 88-null
2009
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures21
- Readers21
- 21
Article Description
Background: Sequencing of the human genome has led to most genes being available in BAC or PAC vectors. However, limited functional information has been assigned to most of these genes. Techniques for the manipulation and transfer of complete functional units on large DNA fragments into human cells are crucial for the analysis of complete genes in their natural genomic context. One limitation of the functional studies using these vectors is the low transfection frequency. Results: We have constructed a shuttle vector, pPAC7, which contains both the EBNA-1 gene and oriP from the Epstein-Barr virus allowing stable maintenance of PAC clones in the nucleus of human cells. The pPAC7 vector also contains the EGFP reporter gene, which allows direct monitoring of the presence of PAC constructs in transfected cells, and the Bsr-cassette that allows highly efficient and rapid selection in mammalian cells by use of blasticidin. Positive selection for recombinant PAC clones is obtained in pPAC7 because the cloning sites are located within the SacBII gene. We show regulated expression of the CDH3 gene carried as a 132 kb genomic insert cloned into pPAC7, demonstrating that the pPAC7 vector can be used for functional studies of genes in their natural genomic context. Furthermore, the results from the transfection of a range of pPAC7 based constructs into two human cell lines suggest that the transfection efficiencies are not only dependent on construct size. Conclusion: The shuttle vector pPAC7 can be used to transfer large genomic constructs into human cells. The genes transferred could potentially contain all long-range regulatory elements, including their endogenous regulatory promoters. Introduction of complete genes in PACs into human cells would potentially allow complementation assays to identify or verify the function of genes affecting cellular phenotypes. © 2009 Askautrud et al; licensee BioMed Central Ltd.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know