The interaction of marine fouling organisms with topography of varied scale and geometry: A review
Biointerphases, ISSN: 1559-4106, Vol: 8, Issue: 1, Page: 1-13
2013
- 83Citations
- 146Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations83
- Citation Indexes83
- 83
- CrossRef62
- Captures146
- Readers146
- 146
Review Description
Many studies have examined the effects of surface topography on the settlement behaviour of marine organisms and this article reviews these investigations with more emphasis on the effects of topography scale. It has been observed that macro topographies (1-100 mm) are generally favoured by marine fouling taxa and are unsuitable for antifouling applications. This is because macro topographies are usually large enough to fit fouling organisms and provide refuge from dangers in the marine environment. Micro topographies had only limited success at reducing fouling from a wide range of marine taxa. The antifouling performance of micro topographies (1 to ≤1000 μm) is dependent on the properties of topography features in terms of symmetry, isotropy, width, length, height/depth, separation distance and average roughness. In terms of the antifouling performance of micro topography, topography geometry may only be of secondary importance in comparison to the size of features itself. It is also noted that hydrodynamic stresses also contribute to the settlement trends of foulers on textured surfaces. Future studies on antifouling topographies should be directed to hierarchical topographies because the mixed topography scales might potentially reduce fouling by both micro and macro organisms. Patterned nano-topographies (1- ≤1000 nm) should also be explored because the antifouling mechanisms of these topographies are not yet clear. © 2013 Myan et al.
Bibliographic Details
American Vacuum Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know