An FPT haplotyping algorithm on pedigrees with a small number of sites
Algorithms for Molecular Biology, ISSN: 1748-7188, Vol: 6, Issue: 1, Page: 8
2011
- 3Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: Genetic disease studies investigate relationships between changes in chromosomes and genetic diseases. Single haplotypes provide useful information for these studies but extracting single haplotypes directly by biochemical methods is expensive. A computational method to infer haplotypes from genotype data is therefore important. We investigate the problem of computing the minimum number of recombination events for general pedigrees with a small number of sites for all members.Results: We show that this NP-hard problem can be parametrically reduced to the Bipartization by Edge Removal problem with additional parity constraints. We solve this problem with an exact algorithm that runs in time, where n is the number of members, m is the number of sites, and k is the number of recombination events.Conclusions: This algorithm infers haplotypes for a small number of sites, which can be useful for genetic disease studies to track down how changes in haplotypes such as recombinations relate to genetic disease. © 2011 Doan and Evans; licensee BioMed Central Ltd.
Bibliographic Details
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know