PlumX Metrics
Embed PlumX Metrics

Weighted gene co-expression network-based approach to identify key genes associated with anthracycline-induced cardiotoxicity and construction of miRNA-transcription factor-gene regulatory network

Molecular Medicine, ISSN: 1528-3658, Vol: 27, Issue: 1, Page: 142
2021
  • 5
    Citations
  • 0
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Background: Cardiotoxicity is a common complication following anthracycline chemotherapy and represents one of the serious adverse reactions affecting life, which severely limits the effective use of anthracyclines in cancer therapy. Although some genes have been investigated by individual studies, the comprehensive analysis of key genes and molecular regulatory network in anthracyclines-induced cardiotoxicity (AIC) is lacking but urgently needed. Methods: The present study integrating several transcription profiling datasets aimed to identify key genes associated with AIC by weighted correlation network analysis (WGCNA) and differentially expressed analysis (DEA) and also constructed miRNA-transcription factor-gene regulatory network. A total of three transcription profiling datasets involving 47 samples comprising 41 rat heart tissues and 6 human induced pluripotent stem cell-derived cardiomyocytes (hiPSCMs) samples were enrolled. Results: The WGCNA and DEA with E-MTAB-1168 identified 14 common genes affected by doxorubicin administrated by 4 weeks or 6 weeks. Functional and signal enrichment analyses revealed that these genes were mainly enriched in the regulation of heart contraction, muscle contraction, heart process, and oxytocin signaling pathway. Ten (Ryr2, Casq1, Fcgr2b, Postn, Tceal5, Ccn2, Tnfrsf12a, Mybpc2, Ankrd23, Scn3b) of the 14 genes were verified by another gene expression profile GSE154603. Importantly, three key genes (Ryr2, Tnfrsf12a, Scn3b) were further validated in a hiPSCMs-based in-vitro model. Additionally, the miRNA-transcription factor-gene regulatory revealed several top-ranked transcription factors including Tcf12, Ctcf, Spdef, Ebf1, Sp1, Rcor1 and miRNAs including miR-124-3p, miR-195-5p, miR-146a-5p, miR-17-5p, miR-15b-5p, miR-424-5p which may be involved in the regulation of genes associated with AIC. Conclusions: Collectively, the current study suggested the important role of the key genes, oxytocin signaling pathway, and the miRNA-transcription factor-gene regulatory network in elucidating the molecular mechanism of AIC.

Bibliographic Details

Wan, Guoxing; Chen, Peinan; Sun, Xue; Cai, Xiaojun; Yu, Xiongjie; Wang, Xianhe; Cao, Fengjun

Springer Science and Business Media LLC

Biochemistry, Genetics and Molecular Biology; Medicine

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know