Conventionally used reference genes are not outstanding for normalization of gene expression in human cancer research
BMC Bioinformatics, ISSN: 1471-2105, Vol: 20, Issue: Suppl 10, Page: 245
2019
- 39Citations
- 115Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations39
- Citation Indexes39
- 39
- CrossRef1
- Captures115
- Readers115
- 115
Article Description
Background: The selection of reference genes is essential for quantifying gene expression. Theoretically they should be expressed stably and not regulated by experimental or pathological conditions. However, identification and validation of reference genes for human cancer research are still being regarded as a critical point, because cancerous tissues often represent genetic instability and heterogeneity. Recent pan-cancer studies have demonstrated the importance of the appropriate selection of reference genes for use as internal controls for the normalization of gene expression; however, no stably expressed, consensus reference genes valid for a range of different human cancers have yet been identified. Results: In the present study, we used large-scale cancer gene expression datasets from The Cancer Genome Atlas (TCGA) database, which contains 10,028 (9,364 cancerous and 664 normal) samples from 32 different cancer types, to confirm that the expression of the most commonly used reference genes is not consistent across a range of cancer types. Furthermore, we identified 38 novel candidate reference genes for the normalization of gene expression, independent of cancer type. These genes were found to be highly expressed and highly connected to relevant gene networks, and to be enriched in transcription-translation regulation processes. The expression stability of the newly identified reference genes across 29 cancerous and matched normal tissues were validated via quantitative reverse transcription PCR (RT-qPCR). Conclusions: We reveal that most commonly used reference genes in current cancer studies cannot be appropriate to serve as representative control genes for quantifying cancer-related gene expression levels, and propose in this study three potential reference genes (HNRNPL, PCBP1, and RER1) to be the most stably expressed across various cancerous and normal human tissues.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85066329738&origin=inward; http://dx.doi.org/10.1186/s12859-019-2809-2; http://www.ncbi.nlm.nih.gov/pubmed/31138119; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2809-2; https://dx.doi.org/10.1186/s12859-019-2809-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know