SDA: A semi-parametric differential abundance analysis method for metabolomics and proteomics data
BMC Bioinformatics, ISSN: 1471-2105, Vol: 20, Issue: 1, Page: 501
2019
- 3Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef1
- Captures31
- Readers31
- 31
Article Description
Background: Identifying differentially abundant features between different experimental groups is a common goal for many metabolomics and proteomics studies. However, analyzing data from mass spectrometry (MS) is difficult because the data may not be normally distributed and there is often a large fraction of zero values. Although several statistical methods have been proposed, they either require the data normality assumption or are inefficient. Results: We propose a new semi-parametric differential abundance analysis (SDA) method for metabolomics and proteomics data from MS. The method considers a two-part model, a logistic regression for the zero proportion and a semi-parametric log-linear model for the possibly non-normally distributed non-zero values, to characterize data from each feature. A kernel-smoothed likelihood method is developed to estimate model coefficients and a likelihood ratio test is constructed for differential abundant analysis. The method has been implemented into an R package, SDAMS, which is available at https://www.bioconductor.org/packages/release/bioc/HTML/SDAMS.HTML. Conclusion: By introducing the two-part semi-parametric model, SDA is able to handle both non-normally distributed data and large fraction of zero values in a MS dataset. It also allows for adjustment of covariates. Simulations and real data analyses demonstrate that SDA outperforms existing methods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85073631852&origin=inward; http://dx.doi.org/10.1186/s12859-019-3067-z; http://www.ncbi.nlm.nih.gov/pubmed/31623550; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3067-z; https://dx.doi.org/10.1186/s12859-019-3067-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know