CNN-DDI: a learning-based method for predicting drug–drug interactions using convolution neural networks
BMC Bioinformatics, ISSN: 1471-2105, Vol: 23, Issue: Suppl 1, Page: 88
2022
- 50Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef4
- Captures51
- Readers51
- 51
Article Description
Background: Drug–drug interactions (DDIs) are the reactions between drugs. They are compartmentalized into three types: synergistic, antagonistic and no reaction. As a rapidly developing technology, predicting DDIs-associated events is getting more and more attention and application in drug development and disease diagnosis fields. In this work, we study not only whether the two drugs interact, but also specific interaction types. And we propose a learning-based method using convolution neural networks to learn feature representations and predict DDIs. Results: In this paper, we proposed a novel algorithm using a CNN architecture, named CNN-DDI, to predict drug–drug interactions. First, we extract feature interactions from drug categories, targets, pathways and enzymes as feature vectors and employ the Jaccard similarity as the measurement of drugs similarity. Then, based on the representation of features, we build a new convolution neural network as the DDIs’ predictor. Conclusion: The experimental results indicate that drug categories is effective as a new feature type applied to CNN-DDI method. And using multiple features is more informative and more effective than single feature. It can be concluded that CNN-DDI has more superiority than other existing algorithms on task of predicting DDIs.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85125982380&origin=inward; http://dx.doi.org/10.1186/s12859-022-04612-2; http://www.ncbi.nlm.nih.gov/pubmed/35255808; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04612-2; https://dx.doi.org/10.1186/s12859-022-04612-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know