GMIEC: A shiny application for the identification of gene-targeted drugs for precision medicine
BMC Genomics, ISSN: 1471-2164, Vol: 21, Issue: 1, Page: 619
2020
- 2Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: Precision medicine is a medical approach that takes into account individual genetic variability and often requires Next Generation Sequencing data in order to predict new treatments. Here we present GMIEC, Genomic Modules Identification et Characterization for genomics medicine, an application that is able to identify specific drugs at the level of single patient integrating multi-omics data such as RNA-sequencing, copy-number variation, methylation, Chromatin Immuno-Precipitation and Exome/Whole Genome sequencing. It is also possible to include clinical data related to each patient. GMIEC has been developed as a web-based R-Shiny platform and gives as output a table easy to use and explore. Results: We present GMIEC, a Shiny application for genomics medicine. The tool allows the users the integration of two or more multiple omics datasets (e.g. gene-expression, copy-number), at sample level, to identify groups of genes that share common genomic and corresponding drugs. We demonstrate the characteristics of our application by using it to analyze a prostate cancer data set. Conclusions: GMIEC provides a simple interface for genomics medicine. GMIEC was develop with Shiny to provide an application that does not require advanced programming skills. GMIEC consists of three sub-application for the analysis (GMIEC-AN), the visualization (GMIEC-VIS) and the exploration of results (GMIEC-RES). GMIEC is an open source software and is available at https://github.com/guidmt/GMIEC-shiny
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090816803&origin=inward; http://dx.doi.org/10.1186/s12864-020-06996-y; http://www.ncbi.nlm.nih.gov/pubmed/32912170; https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-06996-y; https://dx.doi.org/10.1186/s12864-020-06996-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know