An enhanced staining method K-B-2R staining for three-dimensional nerve reconstruction
BMC Neuroscience, ISSN: 1471-2202, Vol: 20, Issue: 1, Page: 32
2019
- 1Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: Three-dimensional (3D) reconstruction of human peripheral nerves, as a useful tool to understand the nerve internal information and functional basis, has become an important area of research in the peripheral nerve field. Methods: In this study, we proposed a two-dimensional (2D) Karnovsky-Roots toluidine blue ponceau 2R (K-B-2R) staining method based upon conventional Karnovsky-Roots staining. It significantly improved the ability to display nerve fascicles, motor and sensory nerve fiber textures. In this method, Karnovsky-Roots staining was carried out, followed by toluidine blue counterstain and ponceau 2R counterstain. Results: Comparisons were conducted between the three methods in staining of median nerve sections, which showed similar distribution characters in acetylcholinesterase-positive sites. The additional counterstaining did not change the basis of Karnovsky-Roots staining. However, the resulting images from this new method significantly facilitated the subsequent 3D nerve reconstruction and 3D printing. Conclusions: These results show that the new staining method significantly enhanced the display qualities of nerve fascicle edges and fiber textures of motor and sensory nerves and facilitated 3D nerve reconstruction.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know