Plastid phylogenomics and fossil evidence provide new insights into the evolutionary complexity of the ‘woody clade’ in Saxifragales
BMC Plant Biology, ISSN: 1471-2229, Vol: 24, Issue: 1, Page: 277
2024
- 2Citations
- 3Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Study Findings from Chinese Academy of Sciences Provide New Insights into Botany (Plastid phylogenomics and fossil evidence provide new insights into the evolutionary complexity of the 'woody clade' in Saxifragales)
2024 APR 25 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- Researchers detail new data in botany. According to
Article Description
Background: The “woody clade” in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. Results: Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. Conclusions: Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85190263386&origin=inward; http://dx.doi.org/10.1186/s12870-024-04917-9; http://www.ncbi.nlm.nih.gov/pubmed/38605351; https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-024-04917-9; https://dx.doi.org/10.1186/s12870-024-04917-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know