Facilitating validation of prediction models: A comparison of manual and semi-automated validation using registry-based data of breast cancer patients in the Netherlands
BMC Medical Research Methodology, ISSN: 1471-2288, Vol: 19, Issue: 1, Page: 117
2019
- 13Citations
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes12
- 12
- Policy Citations1
- Policy Citation1
- Captures27
- Readers27
- 27
Article Description
Background: Clinical prediction models are not routinely validated. To facilitate validation procedures, the online Evidencio platform (https://www.evidencio.com) has developed a tool partly automating this process. This study aims to determine whether semi-automated validation can reliably substitute manual validation. Methods: Four different models used in breast cancer care were selected: CancerMath, INFLUENCE, Predicted Probability of Axillary Metastasis, and PREDICT v.2.0. Data were obtained from the Netherlands Cancer Registry according to the inclusion criteria of the original development population. Calibration (intercepts and slopes) and discrimination (area under the curve (AUC)) were compared between semi-automated and manual validation. Results: Differences between intercepts and slopes of all models using semi-automated validation ranged from 0 to 0.03 from manual validation, which was not clinically relevant. AUCs were identical for both validation methods. Conclusions: This easy to use semi-automated validation option is a good substitute for manual validation and might increase the number of validations of prediction models used in clinical practice. In addition, the validation tool was considered to be user-friendly and to save a lot of time compared to manual validation. Semi-automated validation will contribute to more accurate outcome predictions and treatment recommendations in the target population.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85067120345&origin=inward; http://dx.doi.org/10.1186/s12874-019-0761-5; http://www.ncbi.nlm.nih.gov/pubmed/31176362; https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0761-5; https://dx.doi.org/10.1186/s12874-019-0761-5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know