CaMKII content affects contractile, but not mitochondrial, characteristics in regenerating skeletal muscle
BMC Physiology, ISSN: 1472-6793, Vol: 14, Issue: 1, Page: 7
2014
- 17Citations
- 40Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef13
- Captures40
- Readers40
- 40
Article Description
Background: The multi-meric calcium/calmodulin-dependent protein kinase II (CaMKII) is the main CaMK in skeletal muscle and its expression increases with endurance training. CaMK family members are implicated in contraction-induced regulation of calcium handling, fast myosin type IIA expression and mitochondrial biogenesis. The objective of this study was to investigate the role of an increased CaMKII content for the expression of the contractile and mitochondrial phenotype in vivo. Towards this end we attempted to co-express alpha-and beta-CaMKII isoforms in skeletal muscle and characterised the effect on the contractile and mitochondrial phenotype. Results: Fast-twitch muscle m. gastrocnemius (GM) and slow-twitch muscle m. soleus (SOL) of the right leg of 3-month old rats were transfected via electro-transfer of injected expression plasmids for native α/β CaMKII. Effects were identified from the comparison to control-transfected muscles of the contralateral leg and non-transfected muscles. α/β CaMKII content in muscle fibres was 4-5-fold increased 7 days after transfection. The transfection rate was more pronounced in SOL than GM muscle (i.e. 12.6 vs. 3.5%). The overexpressed α/β CaMKII was functional as shown through increased threonine 287 phosphorylation of ß-CaMKII after isometric exercise and down-regulated transcripts COXI, COXIV, SDHB after high-intensity exercise in situ. α/β CaMKII overexpression under normal cage activity accelerated excitation-contraction coupling and relaxation in SOL muscle in association with increased SERCA2, ANXV and fast myosin type IIA/X content but did not affect mitochondrial protein content. These effects were observed on a background of regenerating muscle fibres. Conclusion: Elevated CaMKII content promotes a slow-to-fast type fibre shift in regenerating muscle but is not sufficient to stimulate mitochondrial biogenesis in the absence of an endurance stimulus.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84964313499&origin=inward; http://dx.doi.org/10.1186/s12899-014-0007-z; http://www.ncbi.nlm.nih.gov/pubmed/25515219; https://bmcphysiol.biomedcentral.com/articles/10.1186/s12899-014-0007-z; https://www.zora.uzh.ch/id/eprint/107907; https://dx.doi.org/10.1186/s12899-014-0007-z; http://dx.doi.org/10.5167/uzh-107907; https://dx.doi.org/10.5167/uzh-107907; https://www.zora.uzh.ch/id/eprint/107907/; https://bmcphysiol.biomedcentral.com/counter/pdf/10.1186/s12899-014-0007-z; https://www.zora.uzh.ch/id/eprint/107907/1/2014_Fl%C3%BCck_CaMKII%20content%20affects%20contractile%2C%20but%20not%20mitochondrial%2C%20characteristics%20in%20regenerating%20skeletal%20muscle.pdf; http://www.biomedcentral.com/1472-6793/14/7; https://bmcphysiol.biomedcentral.com/track/pdf/10.1186/s12899-014-0007-z; http://bmcphysiol.biomedcentral.com/articles/10.1186/s12899-014-0007-z; http://link.springer.com/article/10.1186/s12899-014-0007-z/fulltext.html; https://link.springer.com/track/pdf/10.1186/s12899-014-0007-z; https://link.springer.com/articles/10.1186/s12899-014-0007-z; https://link.springer.com/article/10.1186/s12899-014-0007-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know