Logistic regression model can reduce unnecessary artificial liver support in hepatitis B virus-associated acute-on-chronic liver failure: Decision curve analysis
BMC Medical Informatics and Decision Making, ISSN: 1472-6947, Vol: 16, Issue: 1, Page: 59
2016
- 7Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- Captures25
- Readers25
- 25
Article Description
Background: Several models have been proposed to predict the short-term outcome of acute-on-chronic liver failure (ACLF) after treatment. We aimed to determine whether better decisions for artificial liver support system (ALSS) treatment could be made with a model than without, through decision curve analysis (DCA). Methods: The medical profiles of a cohort of 232 patients with hepatitis B virus (HBV)-associated ACLF were retrospectively analyzed to explore the role of plasma prothrombin activity (PTA), model for end-stage liver disease (MELD) and logistic regression model (LRM) in identifying patients who could benefit from ALSS. The accuracy and reliability of PTA, MELD and LRM were evaluated with previously reported cutoffs. DCA was performed to evaluate the clinical role of these models in predicting the treatment outcome. Results: With the cut-off value of 0.2, LRM had sensitivity of 92.6 %, specificity of 42.3 % and an area under the receiving operating characteristic curve (AUC) of 0.68, which showed superior discrimination over PTA and MELD. DCA revealed that the LRM-guided ALSS treatment was superior over other strategies including "treating all" and MELD-guided therapy, for the midrange threshold probabilities of 16 to 64 %. Conclusions: The use of LRM-guided ALSS treatment could increase both the accuracy and efficiency of this procedure, allowing the avoidance of unnecessary ALSS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84971621769&origin=inward; http://dx.doi.org/10.1186/s12911-016-0302-7; http://www.ncbi.nlm.nih.gov/pubmed/27260306; http://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0302-7; https://dx.doi.org/10.1186/s12911-016-0302-7; https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0302-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know