Compound heterozygous variants including a novel copy number variation in a child with atypical ataxia-telangiectasia: a case report
BMC Medical Genomics, ISSN: 1755-8794, Vol: 14, Issue: 1, Page: 204
2021
- 4Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- CrossRef3
- Captures12
- Readers12
- 12
Article Description
Background: Ataxia-telangiectasia is a rare autosomal recessive, neurodegenerative disorder caused by alterations in the ATM gene. The majority of ATM pathogenic variants are frameshift or nonsense variants which are predicted to truncate the whole ATM protein. Herein, we report on an ataxia telangiectasia child with atypical phenotype who was identified as compound heterozygous for two ATM variants involving a previously described pathogenic single nucleotide variation (SNV) and a novel copy number variation (CNV). Case presentation: A 6-year-old boy presented with delayed development and oculomotor apraxia. Brain magnetic resonance imaging showed interval development of mild atrophy in the cerebellum. Serum alpha fetoprotein level was in normal range. Next-generation sequencing and single-nucleotide polymorphism array tests were performed. Next-generation sequencing revealed a heterozygous nonsense pathogenic variant in ATM, c.742C > T (p.Arg248Ter) inherited from the father. Single-nucleotide polymorphism array revealed a compound heterozygous CNV, arr[GRCh37] 11q22.3(10851766–108183226) × 1, 31460 bp (exons 24–40 deletion of ATM) inherited from the mother, which was validated by reverse transcription-polymerase chain reaction analysis (RT-PCR). We demonstrated that this variant (NM_000051.4:c.3403_6006del) generated a product of in-frame deletion of exon 24–40 of ATM (p.Ser1135_Gln2002del). Conclusions: The compound heterozygosity for ATM variants involving a previously described pathogenic SNV and a novel CNV may be associated with the atypical clinical manifestations. This clinical report extends the genetic and phenotypic spectrum of ATM pathogenic variants in atypical ataxia-telangiectasia, thus making implementation of advanced analysis beyond the routine next-generation sequencing an important consideration in diagnosis and rehabilitation services for children with ataxia-telangiectasia.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85112749037&origin=inward; http://dx.doi.org/10.1186/s12920-021-01053-3; http://www.ncbi.nlm.nih.gov/pubmed/34404412; https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-021-01053-3; https://dx.doi.org/10.1186/s12920-021-01053-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know