PlumX Metrics
Embed PlumX Metrics

A novel disulfide death-related genes prognostic signature identifies the role of IPO4 in glioma progression

Cancer Cell International, ISSN: 1475-2867, Vol: 24, Issue: 1, Page: 168
2024
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Mentions
    1
    • News Mentions
      1
      • 1

Most Recent News

Studies from Second Affiliated Hospital of Anhui Medical University Yield New Data on Gliomas (A novel disulfide death-related genes prognostic signature identifies the role of IPO4 in glioma progression)

2024 MAY 29 (NewsRx) -- By a News Reporter-Staff News Editor at Immunotherapy Daily -- Researchers detail new data in gliomas. According to news reporting

Article Description

Background: “Disulfide death,” a form of cellular demise, is triggered by the abnormal accumulation of intracellular disulfides under conditions of glucose deprivation. However, its role in the prognosis of glioma remains undetermined. Therefore, the main objective of this study is to establish prognostic signature based on disulfide death-related genes (DDRGs) and to provide new solutions in choosing the effective treatment of glioma. Methods: The RNA transcriptome, clinical information, and mutation data of glioma samples were sourced from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), while normal samples were obtained from the Genotype-Tissue Expression (GTEx). DDRGs were compiled from previous studies and selected through differential analysis and univariate Cox regression analysis. The molecular subtypes were determined through consensus clustering analysis. Further, LASSO analysis was employed to select characteristic genes, and subsequently, a risk model comprising seven DDRGs was constructed based on multivariable Cox analysis. Kaplan-Meier survival curves were employed to assess survival differences between high and low-risk groups. Additionally, functional analyses (GO, KEGG, GSEA) were conducted to explore the potential biological functions and signaling pathways of genes associated with the model. The study also explored immune checkpoint (ICP) genes, immune cell infiltration levels, and immune stromal scores. Finally, the effect of Importin-4(IPO4) on glioma has been further confirmed through RT-qPCR, Western blot, and cell functional experiments. Results: 7 genes associated with disulfide death were obtained and two subgroups of patients with different prognosis and clinical characteristics were identified. Risk signature was subsequently developed and proved to serve as an prognostic predictor. Notably, the high-risk group exhibited an immunosuppressive microenvironment characterized by a high concentration of M2 macrophages and regulatory T cells (Tregs). In contrast, the low-risk group showed lower half-maximal inhibitory concentration (IC50) values. Therefore, patients in the high-risk group may benefit more from immunotherapy, while patients in the low-risk group may benefit more from chemotherapy. In addition, in vitro experiments have shown that inhibition of the expression of IPO4 leads to a significant reduction in the proliferation, migration, and invasion of glioma cells. Conclusion: This study identified two glioma subtypes and constructed a prognostic signature based on DDRGs. The signature has the potential to optimize the selection of patients for immune- and chemotherapy and provided a potential therapeutic target for glioma.

Bibliographic Details

Wu, HaoYuan; Yang, ZhiHao; Chang, ChenXi; Wang, ZhiWei; Zhang, DeRan; Guo, QingGuo; Zhao, Bing

Springer Science and Business Media LLC

Medicine; Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know