Does anthropometric status at 6 months predict the over-dispersion of malaria infections in children aged 6-18 months? A prospective cohort study
Malaria Journal, ISSN: 1475-2875, Vol: 18, Issue: 1, Page: 143
2019
- 1Citations
- 110Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: In malaria-endemic settings, a small proportion of children suffer repeated malaria infections, contributing to most of the malaria cases, yet underlying factors are not fully understood. This study was aimed to determine whether undernutrition predicts this over-dispersion of malaria infections in children aged 6-18 months in settings of high malaria and undernutrition prevalence. Methods: Prospective cohort study, conducted in Mangochi, Malawi. Six-months-old infants were enrolled and had length-for-age z-scores (LAZ), weight-for-age z-scores (WAZ), and weight-for-length z-scores (WLZ) assessed. Data were collected for ‘presumed’, clinical, and rapid diagnostic test (RDT)-confirmed malaria until 18 months. Malaria microscopy was done at 6 and 18 months. Negative binomial regression was used for malaria incidence and modified Poisson regression for malaria prevalence. Results: Of the 2723 children enrolled, 2561 (94%) had anthropometry and malaria data. The mean (standard deviation [SD]) of LAZ, WAZ, and WLZ at 6 months were − 1.4 (1.1), − 0.7 (1.2), and 0.3 (1.1), respectively. The mean (SD) incidences of ‘presumed’, clinical, and RDT-confirmed malaria from 6 to 18 months were: 1.1 (1.6), 0.4 (0.8), and 1.3 (2.0) episodes/year, respectively. Prevalence of malaria parasitaemia was 4.8% at 6 months and 9.6% at 18 months. Higher WLZ at 6 months was associated with lower prevalence of malaria parasitaemia at 18 months (prevalence ratio [PR] = 0.80, 95% confidence interval [CI] 0.67 to 0.94, p = 0.007), but not with incidences of ‘presumed’ malaria (incidence rate ratio [IRR] = 0.97, 95% CI 0.92 to 1.02, p = 0.190), clinical malaria (IRR = 1.03, 95% CI 0.94 to 1.12, p = 0.571), RDT-confirmed malaria (IRR = 1.00, 95% CI 0.94 to 1.06, p = 0.950). LAZ and WAZ at 6 months were not associated with malaria outcomes. Household assets, maternal education, and food insecurity were significantly associated with malaria. There were significant variations in hospital-diagnosed malaria by study site. Conclusion: In children aged 6-18 months living in malaria-endemic settings, LAZ, WAZ, and WLZ do not predict malaria incidence. However, WLZ may be associated with prevalence of malaria. Socio-economic and micro-geographic factors may explain the variations in malaria, but these require further study.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85064647718&origin=inward; http://dx.doi.org/10.1186/s12936-019-2778-y; http://www.ncbi.nlm.nih.gov/pubmed/31010435; https://clinicaltrials.gov/ct2/show/NCT00945698; https://malariajournal.biomedcentral.com/articles/10.1186/s12936-019-2778-y; https://dx.doi.org/10.1186/s12936-019-2778-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know