Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells
Journal of Translational Medicine, ISSN: 1479-5876, Vol: 14, Issue: 1, Page: 225
2016
- 179Citations
- 74Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations179
- Citation Indexes179
- 179
- CrossRef40
- Captures74
- Readers74
- 74
Article Description
Background: Acquired radioresistance during radiotherapy is considered as the most important reason for local tumor recurrence or treatment failure. Circular RNAs (circRNAs) have recently been identified as microRNA sponges and involve in various biological processes. The purpose of this study is to investigate the role of circRNAs in the radioresistance of esophageal cancer. Methods: Total RNA was isolated from human parental cell line KYSE-150 and self-established radioresistant esophageal cancer cell line KYSE-150R, and hybridized to Arraystar Human circRNA Array. Quantitative real-time PCR was used to confirm the circRNA expression profiles obtained from the microarray data. Bioinformatic tools including gene ontology (GO) analysis, KEGG pathway analysis and network analysis were done for further assessment. Results: Among the detected candidate 3752 circRNA genes, significant upregulation of 57 circRNAs and downregulation of 17 circRNAs in human radioresistant esophageal cancer cell line KYSE-150R were observed compared with the parental cell line KYSE-150 (fold change ≥2.0 and P < 0.05). There were 9 out of these candidate circRNAs were validated by real-time PCR. GO analysis revealed that numerous target genes, including most microRNAs were involved in the biological processes. There were more than 400 target genes enrichment on Wnt signaling pathway. CircRNA_001059 and circRNA_000167 were the two largest nodes in circRNA/microRNA co-expression network. Conclusions: Our study revealed a comprehensive expression and functional profile of differentially expressed circRNAs in radioresistant esophageal cancer cells, indicating possible involvement of these dysregulated circRNAs in the development of radiation resistance.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84979498135&origin=inward; http://dx.doi.org/10.1186/s12967-016-0977-7; http://www.ncbi.nlm.nih.gov/pubmed/27465405; http://translational-medicine.biomedcentral.com/articles/10.1186/s12967-016-0977-7; https://dx.doi.org/10.1186/s12967-016-0977-7; https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-016-0977-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know