A gene prognostic index from cellular senescence predicting metastasis and radioresistance for prostate cancer
Journal of Translational Medicine, ISSN: 1479-5876, Vol: 20, Issue: 1, Page: 252
2022
- 26Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations26
- Citation Indexes26
- 26
- Captures15
- Readers15
- 15
Article Description
Background: Senescent cells have been identified in the aging prostate, and the senescence-associated secretory phenotype might be linked to prostate cancer (PCa). Thus, we established a cellular senescence-related gene prognostic index (CSGPI) to predict metastasis and radioresistance in PCa. Methods: We used Lasso and Cox regression analysis to establish the CSGPI. Clinical correlation, external validation, functional enrichment analysis, drug and cell line analysis, and tumor immune environment analysis were conducted. All analyses were conducted with R version 3.6.3 and its suitable packages. Results: We used ALCAM and ALDH2 to establish the CSGPI risk score. High-risk patients experienced a higher risk of metastasis than their counterparts (HR: 10.37, 95% CI 4.50–23.93, p < 0.001), consistent with the results in the TCGA database (HR: 1.60, 95% CI 1.03–2.47, p = 0.038). Furthermore, CSGPI had high diagnostic accuracy distinguishing radioresistance from no radioresistance (AUC: 0.938, 95% CI 0.834–1.000). GSEA showed that high-risk patients were highly associated with apoptosis, cell cycle, ribosome, base excision repair, aminoacyl-tRNA biosynthesis, and mismatch repair. For immune checkpoint analysis, we found that PDCD1LG2 and CD226 were expressed at significantly higher levels in patients with metastasis than in those without metastasis. In addition, higher expression of CD226 significantly increased the risk of metastasis (HR: 3.65, 95% CI 1.58–8.42, p = 0.006). We observed that AZD7762, PHA-793887, PI-103, and SNX-2112 might be sensitive to ALDH2 and ALCAM, and PC3 could be the potential cell line used to investigate the interaction among ALDH2, ALCAM, and the above drugs. Conclusions: We found that CSGPI might serve as an effective biomarker predicting metastasis probability and radioresistance for PCa and proposed that immune evasion was involved in the process of PCa metastasis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131156457&origin=inward; http://dx.doi.org/10.1186/s12967-022-03459-8; http://www.ncbi.nlm.nih.gov/pubmed/35658892; https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03459-8; https://dx.doi.org/10.1186/s12967-022-03459-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know