PlumX Metrics
Embed PlumX Metrics

Enterococcus faecalis promotes the progression of colorectal cancer via its metabolite: biliverdin

Journal of Translational Medicine, ISSN: 1479-5876, Vol: 21, Issue: 1, Page: 72
2023
  • 22
    Citations
  • 0
    Usage
  • 36
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    22
  • Captures
    36
  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

Research from Cancer Hospital of University of Chinese Academy of Sciences Reveals New Findings on Enterococcus faecalis (Enterococcus faecalis promotes the progression of colorectal cancer via its metabolite: biliverdin)

2023 FEB 22 (NewsRx) -- By a News Reporter-Staff News Editor at Angiogenesis Daily -- Investigators discuss new findings in Enterococcus faecalis. According to news

Article Description

Background: Enterococcus faecalis (Efa) has been shown to be a “driver bacteria” in the occurrence and development of colorectal cancer (CRC). This study aims to explore the effect of specific metabolites of Efa on CRC. Methods: The pro-tumor effects of Efa were assessed in colonic epithelial cells. The tumor-stimulating molecule produced by Efa was identified using liquid chromatography mass spectrometry (LC-MS). The proliferative effect of metabolites on CRC cells in vitro was assayed as well. The concentration of vascular endothelial growth factor A (VEGFA) and interleukin-8 (IL-8) was determined using enzyme-linked immunosorbent assay (ELISA). Tubular formation assay of human umbilical vein endothelial cells (HUVEC) and cell migration assay were applied to study angiogenesis. Additionally, western blot analysis was used to investigate key regulatory proteins involved in the angiogenesis pathway. Tumor growth was assessed using mouse models with two CRC cells and human colon cancer organoid. Results: Co-incubation with the conditioned medium of Efa increased the proliferation of cultured CRC cells. Biliverdin (BV) was determined as the key metabolite produced by Efa using LC-MS screening. BV promoted colony formation and cell proliferation and inhibited cell cycle arrest of cultured CRC cells. BV significantly increased the expression level of IL-8 and VEGFA by regulating the PI3K/AKT/mTOR signaling pathway, leading to the acceleration of angiogenesis in CRC. The up-regulation of proliferation and angiogenesis by BV were also confirmed in mice. Conclusion: In conclusion, BV, as the tumor-stimulating metabolite of Efa, generates proliferative and angiogenic effects on CRC, which is mainly mediated by the activation of PI3K/AKT/mTOR.

Bibliographic Details

Zhang, Li; Liu, Jing; Deng, Mingxia; Chen, Xiangliu; Jiang, Lushun; Zhang, Jiajie; Tao, Lisheng; Yu, Wei; Qiu, Yunqing

Springer Science and Business Media LLC

Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know