Ice accommodation in plant tissues pinpointed by cryo-microscopy in reflected-polarised-light
Plant Methods, ISSN: 1746-4811, Vol: 16, Issue: 1, Page: 73
2020
- 15Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef3
- Captures13
- Readers13
- 13
Article Description
Background: Freezing resistant plant organs are capable to manage ice formation, ice propagation, and ice accommodation down to variable temperature limits without damage. Insights in ice management strategies are essential for the fundamental understanding of plant freezing and frost survival. However, knowledge about ice management is scarce. Ice crystal localisation inside plant tissues is challenging and is mainly based on optical appearance of ice in terms of colour and shape, investigated by microscopic methods. Notwithstanding, there are major uncertainties regarding the reliability and accuracy of ice identification and localisation. Surface light reflections, which can originate from water or resin, even at non-freezing temperatures, can have a similar appearance as ice. We applied the principle of birefringence, which is a property of ice but not of liquid water, in reflected-light microscopy to localise ice crystals in frozen plant tissues in an unambiguous manner. Results: In reflected-light microscopy, water was clearly visible, while ice was more difficult to identify. With the presented polarised cryo-microscopic system, water, including surface light reflections, became invisible, whereas ice crystals showed a bright and shiny appearance. Based on this, we were able to detect loci where ice crystals are accommodated in frozen and viable plant tissues. In Buxus sempervirens leaves, large ice needles occupied and expanded the space between the adaxial and abaxial leaf tissues. In Galanthus nivalis leaves, air-filled cavities became filled up with ice. Buds of Picea abies managed ice in a cavity at the bud basis and between bud scales. By observing the shape and attachment point of the ice crystals, it was possible to identify tissue fractions that segregate intracellular water towards the aggregating ice crystals. Conclusion: Cryo-microscopy in reflected-polarised-light allowed a robust identification of ice crystals in frozen plant tissue. It distinguishes itself, compared with other methods, by its ease of ice identification, time and cost efficiency and the possibility for high throughput. Profound knowledge about ice management strategies, within the whole range of freezing resistance capacities in the plant kingdom, might be the link to applied science for creating arrangements to avoid future frost damage to crops.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85085298817&origin=inward; http://dx.doi.org/10.1186/s13007-020-00617-1; http://www.ncbi.nlm.nih.gov/pubmed/32477423; https://plantmethods.biomedcentral.com/articles/10.1186/s13007-020-00617-1; https://dx.doi.org/10.1186/s13007-020-00617-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know