Accelerating leaf area measurement using a volumetric approach
Plant Methods, ISSN: 1746-4811, Vol: 18, Issue: 1, Page: 61
2022
- 7Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- Captures19
- Readers19
- 19
Article Description
Background: Despite the advances in the techniques of indirect estimation of leaf area, the destructive measurement approaches have still remained as the reference and the most accurate methods. However, even utilizing the modern sensors and applications usually requires the laborious and time-consuming practice of unfolding and analyzing the single leaves, separately. In the present study, a volumetric approach was tested to determine the pile leaf area based on the ratio of leaf volume divided by thickness. For this purpose, the suspension technique was used for volumetry, which is based on the simple practice and calculations of the Archimedes’ principle. Results: Wheat volumetric leaf area (VLA), had a high agreement and approximately 1:1 correlation with the conventionally measured optical leaf area (OLA). Exclusion of the midrib volume from calculations, did not affect the estimation error (NRMSE < 2.61%); however, improved the slope of the linear model by about 6%, and also reduced the bias between the methods. The error of sampling for determining mean leaf thickness of the pile, was also less than 2% throughout the season. Besides, a more practical and facilitated version of pile volumetry was tested using Specific Gravity Bench (SGB), which is currently available as a laboratory equipment. As an important observation, which was also expectable according to the leaf 3D expansion (i.e., in a given 2D plane), it was evidenced that the variations in the OLA exactly follows the pattern of the changes in the leaf volume. Accordingly, it was suggested that the relative leaf areas of various experimental treatments might be compared directly based on volume, and independently of leaf thickness. Furthermore, no considerable difference was observed among the OLAs measured using various image resolutions (NRMSE < 0.212%); which indicates that even the superfast scanners with low resolutions as 200 dpi may be used for a precision optical measurement of leaf area. Conclusions: It is expected that utilizing the reliable and simple concept of volumetric leaf area, based on which the measurement time might be independent of sample size, facilitate the laborious practice of leaf area measurement; and consequently, improve the precision of field experiments.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129721894&origin=inward; http://dx.doi.org/10.1186/s13007-022-00896-w; http://www.ncbi.nlm.nih.gov/pubmed/35527245; https://plantmethods.biomedcentral.com/articles/10.1186/s13007-022-00896-w; https://dx.doi.org/10.1186/s13007-022-00896-w
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know