Research on automatic recognition radiomics algorithm for early sacroiliac arthritis based on sacroiliac MRI imaging
Journal of orthopaedic surgery and research, ISSN: 1749-799X, Vol: 19, Issue: 1, Page: 96-null
2024
- 1Citations
- 9Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Second Affiliated Hospital of Fujian Medical University Reports Findings in Arthritis (Research on automatic recognition radiomics algorithm for early sacroiliac arthritis based on sacroiliac MRI imaging)
2024 FEB 09 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- New research on Musculoskeletal Diseases and Conditions - Arthritis
Article Description
OBJECTIVE: To create an automated machine learning model using sacroiliac joint MRI imaging for early sacroiliac arthritis detection, aiming to enhance diagnostic accuracy. METHODS: We conducted a retrospective analysis involving 71 patients with early sacroiliac arthritis and 85 patients with normal sacroiliac joint MRI scans. Transverse T1WI and T2WI sequences were collected and subjected to radiomics analysis by two physicians. Patients were randomly divided into training and test groups at a 7:3 ratio. Initially, we extracted the region of interest on the sacroiliac joint surface using ITK-SNAP 3.6.0 software and extracted radiomic features. We retained features with an Intraclass Correlation Coefficient > 0.80, followed by filtering using max-relevance and min-redundancy (mRMR) and LASSO algorithms to establish an automatic identification model for sacroiliac joint surface injury. Receiver operating characteristic (ROC) curves were plotted, and the area under the ROC curve (AUC) was calculated. Model performance was assessed by accuracy, sensitivity, and specificity. RESULTS: We evaluated model performance, achieving an AUC of 0.943 for the SVM-T1WI training group, with accuracy, sensitivity, and specificity values of 0.878, 0.836, and 0.943, respectively. The SVM-T1WI test group exhibited an AUC of 0.875, with corresponding accuracy, sensitivity, and specificity values of 0.909, 0.929, and 0.875, respectively. For the SVM-T2WI training group, the AUC was 0.975, with accuracy, sensitivity, and specificity values of 0.933, 0.889, and 0.750. The SVM-T2WI test group produced an AUC of 0.902, with accuracy, sensitivity, and specificity values of 0.864, 0.889, and 0.800. In the SVM-bimodal training group, we achieved an AUC of 0.974, with accuracy, sensitivity, and specificity values of 0.921, 0.889, and 0.971, respectively. The SVM-bimodal test group exhibited an AUC of 0.964, with accuracy, sensitivity, and specificity values of 0.955, 1.000, and 0.875, respectively. CONCLUSION: The radiomics-based detection model demonstrates excellent automatic identification performance for early sacroiliitis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85183699575&origin=inward; http://dx.doi.org/10.1186/s13018-024-04569-3; http://www.ncbi.nlm.nih.gov/pubmed/38287422; https://josr-online.biomedcentral.com/articles/10.1186/s13018-024-04569-3; https://dx.doi.org/10.1186/s13018-024-04569-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know