PlumX Metrics
Embed PlumX Metrics

circ-hnRNPU inhibits NONO-mediated c-Myc transactivation and mRNA stabilization essential for glycosylation and cancer progression

Journal of Experimental and Clinical Cancer Research, ISSN: 1756-9966, Vol: 42, Issue: 1, Page: 313
2023
  • 10
    Citations
  • 0
    Usage
  • 8
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Findings on Gastric Cancer Reported by Investigators at Huazhong University of Science and Technology ( circ-hnrnpu Inhibits Nono-mediated C-myc Transactivation and Mrna Stabilization Essential for Glycosylation and Cancer Progression)

2023 DEC 26 (NewsRx) -- By a News Reporter-Staff News Editor at Cancer Daily -- Data detailed on Oncology - Gastric Cancer have been presented.

Article Description

Background: Recent evidence reveals the emerging functions of circular RNA (circRNA) and protein glycosylation in cancer progression. However, the roles of circRNA in regulating glycosyltransferase expression in gastric cancer remain to be determined. Methods: Circular RNAs (circRNAs) were validated by Sanger sequencing. Co-immunoprecipitation, mass spectrometry, and RNA sequencing assays were applied to explore protein interaction and target genes. Gene expression regulation was observed by chromatin immunoprecipitation, RNA immunoprecipitation, dual-luciferase reporter, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its partners on the glycosylation, growth, invasion, and metastasis of gastric cancer cells. Results: Circ-hnRNPU, an exonic circRNA derived from heterogenous nuclear ribonuclear protein U (hnRNPU), was identified to exert tumor suppressive roles in protein glycosylation and progression of gastric cancer. Mechanistically, circ-hnRNPU physically interacted with non-POU domain containing octamer binding (NONO) protein to induce its cytoplasmic retention, resulting in down-regulation of glycosyltransferases (GALNT2, GALNT6, MGAT1) and parental gene hnRNPU via repression of nuclear NONO-mediated c-Myc transactivation or cytoplasmic NONO-facilitated mRNA stability. Rescue studies indicated that circ-hnRNPU inhibited the N- and O-glycosylation, growth, invasion, and metastasis of gastric cancer cells via interacting with NONO protein. Pre-clinically, administration of lentivirus carrying circ-hnRNPU suppressed the protein glycosylation, tumorigenesis, and aggressiveness of gastric cancer xenografts. In clinical cases, low circ-hnRNPU levels and high NONO or c-Myc expression were associated with poor survival outcome of gastric cancer patients. Conclusions: These findings indicate that circ-hnRNPU inhibits NONO-mediated c-Myc transactivation and mRNA stabilization essential for glycosylation and cancer progression.

Bibliographic Details

Li, Hongjun; Jiao, Wanju; Song, Jiyu; Wang, Jianqun; Chen, Guo; Li, Dan; Wang, Xiaojing; Bao, Banghe; Du, Xinyi; Cheng, Yang; Yang, Chunhui; Tong, Qiangsong; Zheng, Liduan

Springer Science and Business Media LLC

Medicine; Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know