First Italian experience using the automated craniofacial gestalt analysis on a cohort of pediatric patients with multiple anomaly syndromes
Italian Journal of Pediatrics, ISSN: 1824-7288, Vol: 48, Issue: 1, Page: 91
2022
- 4Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures7
- Readers7
Article Description
Background: In this study, we used the novel DeepGestalt technology powered by Face2Gene (FDNA Inc., MA, USA) in suggesting a correct diagnosis based on the facial gestalt of well-known multiple anomaly syndromes. Only molecularly characterized pediatric patients were considered in the present research. Subjects and methods: A total of 19 two-dimensional (2D) images of patients affected by several molecularly confirmed craniofacial syndromes (14 monogenic disorders and 5 chromosome diseases) and evaluated at the main involved Institution were analyzed using the Face2Gene CLINIC application (vs.19.1.3). Patients were cataloged into two main analysis groups (A, B) according to the number of clinical evaluations. Specifically, group A contained the patients evaluated more than one time, while in group B were comprised the subjects with a single clinical assesment. The algorithm’s reliability was measured based on its capacity to identify the correct diagnosis as top-1 match, within the top-10 match and top-30 matches, only based on the uploaded image and not any other clinical finding or HPO terms. Failure was represented by the top-0 match. Results: The correct diagnosis was suggested respectively in 100% (8/8) and 81% (9/11) of cases of group A and B, globally failing in 16% (3/19). Conclusion: The tested tool resulted to be useful in identifying the facial gestalt of a heterogeneous group of syndromic disorders. This study illustrates the first Italian experience with the next generation phenotyping technology, following previous works and providing additional observations.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know