Systems-epigenomics inference of transcription factor activity implicates aryl-hydrocarbon-receptor inactivation as a key event in lung cancer development
Genome Biology, ISSN: 1474-760X, Vol: 18, Issue: 1, Page: 236
2017
- 35Citations
- 62Captures
Metric Options: Counts3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations35
- Citation Indexes35
- 35
- CrossRef7
- Captures62
- Readers62
- 62
Article Description
Background: Diverse molecular alterations associated with smoking in normal and precursor lung cancer cells have been reported, yet their role in lung cancer etiology remains unclear. A prominent example is hypomethylation of the aryl hydrocarbon-receptor repressor (AHRR) locus, which is observed in blood and squamous epithelial cells of smokers, but not in lung cancer. Results: Using a novel systems-epigenomics algorithm, called SEPIRA, which leverages the power of a large RNA-sequencing expression compendium to infer regulatory activity from messenger RNA expression or DNA methylation (DNAm) profiles, we infer the landscape of binding activity of lung-specific transcription factors (TFs) in lung carcinogenesis. We show that lung-specific TFs become preferentially inactivated in lung cancer and precursor lung cancer lesions and further demonstrate that these results can be derived using only DNAm data. We identify subsets of TFs which become inactivated in precursor cells. Among these regulatory factors, we identify AHR, the aryl hydrocarbon-receptor which controls a healthy immune response in the lung epithelium and whose repressor, AHRR, has recently been implicated in smoking-mediated lung cancer. In addition, we identify FOXJ1, a TF which promotes growth of airway cilia and effective clearance of the lung airway epithelium from carcinogens. Conclusions: We identify TFs, such as AHR, which become inactivated in the earliest stages of lung cancer and which, unlike AHRR hypomethylation, are also inactivated in lung cancer itself. The novel systems-epigenomics algorithm SEPIRA will be useful to the wider epigenome-wide association study community as a means of inferring regulatory activity.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85038634232&origin=inward; http://dx.doi.org/10.1186/s13059-017-1366-0; http://www.ncbi.nlm.nih.gov/pubmed/29262847; https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1366-0; https://dx.doi.org/10.1186/s13059-017-1366-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know