Temperature impacts the bovine ex vivo immune response towards Mycoplasmopsis bovis
Veterinary research, ISSN: 1297-9716, Vol: 55, Issue: 1, Page: 18-null
2024
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Although cattle are the mammalian species with most global biomass associated with a huge impact on our planet, their immune system remains poorly understood. Notably, the bovine immune system has peculiarities such as an overrepresentation of γδ T cells that requires particular attention, specifically in an infectious context. In line of 3R principles, we developed an ex vivo platform to dissect host-pathogen interactions. The experimental design was based on two independent complementary readouts: firstly, a novel 12-14 color multiparameter flow cytometry assay measuring maturation (modulation of cell surface marker expression) and activation (intracellular cytokine detection) of monocytes, conventional and plasmacytoid dendritic cells, natural killer cells, γδ T cells, B and T cells; secondly, a multiplex immunoassay monitoring bovine chemokine and cytokine secretion levels. The experiments were conducted on fresh primary bovine blood cells exposed to Mycoplasmopsis bovis (M. bovis), a major bovine respiratory pathogen. Besides reaffirming the tight cooperation of the different primary blood cells, we also identified novel key players such as strong IFN-γ secreting NK cells, whose role was so far largely overlooked. Additionally, we compared the host-pathogen interactions at different temperatures, including commonly used 37 °C, ruminant body temperature (38-38.5 °C) and fever (≥ 39.5 °C). Strikingly, working under ruminant physiological temperature influenced the capacity of most immune cell subsets to respond to M. bovis compared to 37 °C. Under fever-like temperature conditions the immune response was impaired compared to physiological temperature. Our experimental approach, phenotypically delineating the bovine immune system provided a thorough vision of the immune response towards M. bovis and the influence of temperature towards that immune response.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185211015&origin=inward; http://dx.doi.org/10.1186/s13567-024-01272-3; http://www.ncbi.nlm.nih.gov/pubmed/38351086; https://veterinaryresearch.biomedcentral.com/articles/10.1186/s13567-024-01272-3; https://dx.doi.org/10.1186/s13567-024-01272-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know