Stability is essential for insecticidal activity of Vip3Aa toxin against Spodoptera exigua
AMB Express, ISSN: 2191-0855, Vol: 12, Issue: 1, Page: 92
2022
- 1Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Vegetative insecticidal proteins 3A (Vip3A) were important insecticidal proteins for control of lepidopteran pests. Previous study demonstrated that Vip3Aa and Vip3Ad showed significant difference in insecticidal activities against Spodoptera exigua, while the molecular mechanism remained ambiguous. Here we demonstrated that the difference in insecticidal activities between Vip3Aa and Vip3Ad might be caused by the difference in stability of Vip3Aa and Vip3Ad in S. exigua midgut protease. Vip3Aa was quite stable while Vip3Ad could be further degraded. Molecular dynamics simulation revealed that Vip3Aa was more stable than Vip3Ad, with smaller RMSD and RMSF value. Amino acid sequence alignment indicated that three were three extra prolines (P591, P605 and P779) located on Vip3Aa. We further identified that residue P591 played a crucial role on stability and insecticidal activity of Vip3Aa. Taken together, our study demonstrated that the stability was essential for the insecticidal activity of Vip3A toxins, which might provide new insight into the action mode of Vip3A toxins and contribute to the design Vip3A variants with improved stability and insecticidal activity.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85134252155&origin=inward; http://dx.doi.org/10.1186/s13568-022-01430-w; http://www.ncbi.nlm.nih.gov/pubmed/35834019; https://amb-express.springeropen.com/articles/10.1186/s13568-022-01430-w; https://dx.doi.org/10.1186/s13568-022-01430-w
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know