A new data-driven paradigm for the study of avian migratory navigation
Movement Ecology, ISSN: 2051-3933, Vol: 13, Issue: 1, Page: 16
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Avian navigation has fascinated researchers for many years. Yet, despite a vast amount of literature on the topic it remains a mystery how birds are able to find their way across long distances while relying only on cues available locally and reacting to those cues on the fly. Navigation is multi-modal, in that birds may use different cues at different times as a response to environmental conditions they find themselves in. It also operates at different spatial and temporal scales, where different strategies may be used at different parts of the journey. This multi-modal and multi-scale nature of navigation has however been challenging to study, since it would require long-term tracking data along with contemporaneous and co-located information on environmental cues. In this paper we propose a new alternative data-driven paradigm to the study of avian navigation. That is, instead of taking a traditional theory-based approach based on posing a research question and then collecting data to study navigation, we propose a data-driven approach, where large amounts of data, not purposedly collected for a specific question, are analysed to identify as-yet-unknown patterns in behaviour. Current technological developments have led to large data collections of both animal tracking data and environmental data, which are openly available to scientists. These open data, combined with a data-driven exploratory approach using data mining, machine learning and artificial intelligence methods, can support identification of unexpected patterns during migration, and lead to a better understanding of multi-modal navigational decision-making across different spatial and temporal scales.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know