Teaching computing for complex problems in civil engineering and geosciences using big data and machine learning: synergizing four different computing paradigms and four different management domains
Journal of Big Data, ISSN: 2196-1115, Vol: 10, Issue: 1
2023
- 8Citations
- 104Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This article describes a teaching strategy that synergizes computing and management, aimed at the running of complex projects in industry and academia, in the areas of civil engineering, physics, geosciences, and a number of other related fields. The course derived from this strategy includes four parts: (a) Computing with a selected set of modern paradigms—the stress is on Control Flow and Data Flow computing paradigms, but paradigms conditionally referred to as Energy Flow and Diffusion Flow are also covered; (b) Project management that is holistic—the stress is on the wide plethora of issues spanning from the preparation of project proposals, all the way to incorporation activities to follow after the completion of a successful project; (c) Examples from past research and development experiences—the stress is on experiences of leading experts from academia and industry; (d) Student projects that stimulate creativity—the stress is on methods that educators could use to induce and accelerate the creativity of students in general. Finally, the article ends with selected pearls of wisdom that could be treated as suggestions for further elaboration.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know