Evidence of strong long-period ground motions of engineering importance for Nankai Trough plate boundary earthquakes: comparison of ground motions of two moderate-magnitude earthquakes
Earth, Planets and Space, ISSN: 1880-5981, Vol: 70, Issue: 1
2018
- 5Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We analyzed strong-motion and broadband recordings of two moderate-magnitude earthquakes that occurred in the Nankai Trough. The first event was the 2004 Mw 6.5 southeast off-Kii peninsula earthquake, an aftershock event inside the Philippine Sea Plate near the Nankai Trough axis. The second event was the 2016 Mw 5.8 southeast off-Mie Prefecture earthquake, an independent event in the rupture area of the 1944 Mw ~ 8 Tonankai earthquake. The centroid depths were 11 and 14 km for the 2004 and 2016 events, respectively. Despite a large difference in the moment magnitude between the two events, the JMA magnitude (Mj) was 6.5 for both the events. We found that the short-period ground motions (e.g., response spectra at periods < 1 s) as well as the much longer-period ground motions (> 20 s) for the 2016 event scaled generally well with the moment magnitude of the event. In contrast, the ground motions from the 2016 event were comparable to those for the larger-moment-magnitude 2004 event at equal distances at periods of about 2–20 s in wide areas and the observed acceleration response spectra at those periods were noticeably underestimated for the 2016 event by the ground motion prediction equation (GMPE) that employs Mw. An examination of the existing subsurface velocity model suggested that the difference in the relative location of the two events with respect to the thick accretionary prism of low seismic velocity most probably caused the comparable amplitude of the seismic waves at those periods. As a result, we posit that the values of Mj are equal for the two events because Mj is estimated using the displacement amplitude of ground motions at periods smaller than about 6 s. On the other hand, GMPE employing Mj generally described the observed data well. The results suggested that the plate boundary earthquakes in the Nankai Trough may excite strong long-period ground motions of engineering importance, and these ground motions appear to be better explained by Mj than by Mw in GMPEs for moderate-magnitude earthquakes in the Nankai Trough subduction zone.[Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know