Identification of bacterial laccase cueO mutation from the metagenome of chemical plant sludge
Bioresources and Bioprocessing, ISSN: 2197-4365, Vol: 4, Issue: 1
2017
- 18Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: The metagenome contains plenty of genetic resources and can be used to search for the novel gene or mutant. Results: In this study, the bacterial laccase gene (cueO) with single or multiple mutations was directly cloned based on the metagenome of a chemical plant sludge. An interesting mutation (G276R) was identified from those cloned mutants. The other mutants (G276N, G276Y, and G276K) with improved catalytic efficiency were identified by the saturation mutagenesis on residue G276. The optimal temperature for wild-type CueO enzyme activity was about 70 °C, compared to 60 °C, 50 °C, 50 °C, and 30 °C for the G276R, G276N, G276Y, and G276K mutant enzymes, respectively. The catalytic efficiency (k/K) with 8 mmol Cu of the G276R, G276N, G276Y, and G276K mutants was 1.2-, 2.7-, 1.3-, and 2.7-fold, respectively, compared to the wild-type enzyme. In addition, the mutants G276R, G276N, G276Y, and G276K oxidized the carcinogen benzo[α]pyrene more efficiently compared to the wild-type enzyme. Conclusion: All of the results indicate that G276 of CueO plays an important role in enzyme activity, and the useful mutants can be identified based on the metagenome.[Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know