Hydromechanical constraints on piping failure of landslide dams: an experimental investigation
Geoenvironmental Disasters, ISSN: 2197-8670, Vol: 3, Issue: 1
2016
- 40Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: Understanding the internal structure and material properties of landslide dams is essential for evaluating their potential failure mechanisms, especially by seepage and piping. Recent research has shown that the behaviour of landslide dams depends on the internal composition of the impoundment. We here present an experimental investigation of the hydromechanical constraints of landslide dam failure by piping. Experiments were conducted in a 2 m × 0.45 × 0.45 m flume, with a flume bed slope of 5°. Uniform dams of height 0.25 m were built with either mixed or homogeneous silica sands. Uniform-sized pebbles encased in a plastic mesh were used to initiate internal erosion. Two laser displacement sensors were used to monitor the behaviour of the dams during the internal erosion process while a linear displacement transducer and a water-level probe were deployed to monitor the onset of internal erosion and the hydrological trend of the upstream lake. Results: Five major phases of the breach evolution process were observed: pipe evolution, pipe enlargement, crest settlement, hydraulic fracturing and progressive sloughing. Two major failure modes were observed: seepage and piping-induced collapse. Majority of the dams composed of homogeneous material failed by seepage and downstream slope saturation, whereas dams built with mixed material failed by piping. Conclusions: We found that an increase in soil density and homogeneity of the dam materials reduced the potential to form a continuous piping hole through the dams. Furthermore, the potential for piping and progression of the piping hole through the dams increased with an increase in the percentage of fines and a decrease in hydraulic conductivity. The rate of pipe enlargement is related to the erodibility of the soil, which itself is inversely proportional to the soil density. This study provides new insights into the governing conditions and breach evolution mechanisms of landslide dams, as triggered by seepage and piping.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85058873296&origin=inward; http://dx.doi.org/10.1186/s40677-016-0038-9; http://geoenvironmental-disasters.springeropen.com/articles/10.1186/s40677-016-0038-9; http://link.springer.com/content/pdf/10.1186/s40677-016-0038-9; http://link.springer.com/content/pdf/10.1186/s40677-016-0038-9.pdf; http://link.springer.com/article/10.1186/s40677-016-0038-9/fulltext.html; https://dx.doi.org/10.1186/s40677-016-0038-9; https://geoenvironmental-disasters.springeropen.com/articles/10.1186/s40677-016-0038-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know