Potential role of PIM1 inhibition in the treatment of SARS-CoV-2 infection
Journal of Genetic Engineering and Biotechnology, ISSN: 1687-157X, Vol: 21, Issue: 1, Page: 65
2023
- 1Citations
- 12Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New COVID-19 Study Results from Al-Azhar University Described (Potential role of PIM1 inhibition in the treatment of SARS-CoV-2 infection)
2023 JUN 14 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx COVID-19 Daily -- A new study on COVID-19 is now available. According
Article Description
SARS-CoV-2 infection involves disturbing multiple molecular pathways related to immunity and cellular functions. PIM1 is a serine/threonine-protein kinase found to be involved in the pathogenesis of several viral infections. One PIM1 substrate, Myc, was reported to interact with TMPRSS2, which is crucial for SARS-CoV-2 cell entry. PIM1 inhibitors were reported to have antiviral activity through multiple mechanisms related to immunity and proliferation. This study aimed to evaluate the antiviral activity of 2-pyridone PIM1 inhibitor against SARS-CoV-2 and its potential role in hindering the progression of COVID-19. It also aimed to assess PIM1 inhibitor’s effect on the expression of several genes of Notch signaling and Wnt pathways. In vitro study was conducted on Vero-E6 cells infected by SARS-CoV-2 “NRC-03-nhCoV” virus. Protein–protein interaction of the study genes was assessed to evaluate their relation to cell proliferation and immunity. The effect of 2-pyridone PIM1 inhibitor treatment on viral load and mRNA expression of target genes was assessed at three time points. Treatment with 2-pyridone PIM1 inhibitor showed potential antiviral activity against SARS-CoV-2 (IC 50 of 37.255 µg/ml), significantly lowering the viral load. Functional enrichments of the studied genes include negative regulation of growth rate, several biological processes involved in cell proliferation, and Interleukin-4 production, with interleukin-6 as a predicted functional partner. These results suggest an interplay between study genes with relation to cell proliferation and immunity. Following in vitro SARS-CoV-2 infection, Notch pathway genes, CTNNB1, SUMO1, and TDG, were found to be overexpressed compared to uninfected cells. Treatment with 2-pyridone PIM1 inhibitor significantly lowers the expression levels of study genes, restoring Notch1 and BCL9 to the control level while decreasing Notch2 and CTNNB1 below control levels. 2-pyridone PIM1 inhibitor could hinder cellular entry of SARS-CoV-2 and modulate several pathways implicated in immunity, suggesting a potential benefit in the development of anti-SARS-CoV-2 therapeutic approach.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1687157X23010570; http://dx.doi.org/10.1186/s43141-023-00520-x; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85160065324&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37211584; https://linkinghub.elsevier.com/retrieve/pii/S1687157X23010570; https://dx.doi.org/10.1186/s43141-023-00520-x
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know