Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κb pathway
Stem Cell Research and Therapy, ISSN: 1757-6512, Vol: 5, Issue: 3, Page: 67
2014
- 133Citations
- 78Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations133
- Citation Indexes133
- 133
- CrossRef117
- Captures78
- Readers78
- 78
Article Description
Introduction. Periodontitis is initiated and sustained by bacteria. However, the mechanism of bacteria induced periodontitis is still unknown. We hypothesized that bacterial components can affect the functions of stem cells in the periodontium. In this study, we comparatively investigated the influence of Lipopolysaccharide (LPS) on the osteogenesis potential of human periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs). Methods. Human PDLSCs and BMMSCs were harvested and mineralized nodule formation was assessed by alizarin red S staining. Expression level of osteogenic related gene was detected by quantitative RT-PCR (qRT-PCR). The expression of Toll-like receptor 4 (TLR4) and its downstream signaling pathway were examined by western blot. The role of TLR4 and related signaling pathway in LPS impairing the osteogenic potential of human PDLSCs and BMMSCs were also studied by alizarin red S staining and qRT-PCR. Experimental periodontitis was induced in adult Sprague-Dawley rats and the alveolar bone loss was measured by micro computed tomography analysis. The expression of alkaline phosphatase (ALP) was assessed by immunohistochemistry and the number of osteoclasts was shown by Tartrate-resistant acid phosphatase (TRAP) staining. Results: LPS decreased the osteogenic differentiation of human PDLSCs through TLR4 regulated nuclear factor (NF)-κB pathway, but not for BMMSCs. Blocking TLR4 or NF-κB signaling partially reversed the decreased osteogenic potential of PDLSCs and prevented the alveolar bone loss caused by LPS experimental periodontitis in rats. The ALP expression in the periodontal ligament was elevated after treatment with anti-TLR4 antibody or pyrrolidinedithiocarbamate, whereas there was no statistical significance among groups for the number of osteoclasts. Conclusions: These data suggest that LPS can activate TLR4 regulated NF-κB pathway of human PDLSCs, thus decreasing their osteogenic potential. Blockage of TLR4 or NF-κB pathway might provide a new approach for periodontitis treatment. © 2014 Li et al.; licensee BioMed Central Ltd.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know