PlumX Metrics
Embed PlumX Metrics

Retinoid X receptor activation is essential for docosahexaenoic acid protection of retina photoreceptors

Journal of Lipid Research, ISSN: 0022-2275, Vol: 54, Issue: 8, Page: 2236-2246
2013
  • 41
    Citations
  • 0
    Usage
  • 34
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We have established that docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, promotes survival of rat retina photoreceptors during early development in vitro and upon oxidative stress by activating the ERK/MAPK signaling pathway. Here we have investigated whether DHA turns on this pathway through activation of retinoid X receptors (RXRs) or by inducing tyrosine kinase (Trk) receptor activation. We also evaluated whether DHA release from phospholipids was required for its protective effect. Addition of RXR antagonists (HX531, PA452) to rat retinal neuronal cultures inhibited DHA protection during early development in vitro and upon oxidative stress induced with Paraquat or H 2 O 2. In contrast, the Trk inhibitor K252a did not affect DHA prevention of photoreceptor apoptosis. These results imply that activation of RXRs was required for DHA protection whereas Trk receptors were not involved in this protection. Pretreatment with 4-bromoenol lactone, a phospholipase A 2 inhibitor, blocked DHA prevention of oxidative stress-induced apoptosis of photoreceptors. It is noteworthy that RXR agonists (HX630, PA024) also rescued photoreceptors from H 2 O 2 -induced apoptosis. These results provide the first evidence that activation of RXRs prevents photoreceptor apoptosis and suggest that DHA is first released from phospholipids and then activates RXRs to promote the survival of photoreceptors.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know