Variation in the insulin-like growth factor 1 gene in primates
Endocrinology, ISSN: 1945-7170, Vol: 158, Issue: 4, Page: 804-814
2017
- 13Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef11
- Captures16
- Readers16
- 16
Article Description
Insulin-like growth factor 1 (IGF1) is a multifunctional peptide that is involved in a wide range of physiological and pathophysiological processes in many animal species, ranging from somatic growth in children to metabolism and tissue regeneration and repair in adults. The IGF1 gene is under multifactorial regulation in the few species in which it has been studied, with major control being exerted by growth hormone through a gene expression pathway involving inducible binding of the STAT5b transcription factor to dispersed enhancer elements. In this study, using resources available in public genomic databases, genes encoding IGF1 have been analyzed in a cohort of six nonhuman primate species representing >60 million years of evolutionary diversification from a common ancestor: Chimpanzee, gorilla, macaque, olive baboon, marmoset, and mouse lemur. The IGF1 gene has been well conserved among these primates. Similar to human IGF1, each gene appears to be composed of six exons and five introns, and contains recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are very similar, and DNA sequence conservation is high, not only in orthologous exons and promoter regions, but also in putative growth hormone-activated STAT5b-binding enhancers that are found in analogous locations in IGF1 intron 3 and in 50 distal intergenic DNA. Taken together, the high level of organizational and nucleotide sequence similarity in the IGF1 gene and locus among these seven species supports the contention that common regulatory paradigms had existed prior to the onset of primate speciation .85 million years ago.
Bibliographic Details
The Endocrine Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know