Isolation and characterization of a novel pituitary tumor apoptosis gene
Molecular Endocrinology, ISSN: 0888-8809, Vol: 18, Issue: 7, Page: 1827-1839
2004
- 51Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations51
- Citation Indexes51
- 51
- CrossRef26
- Captures23
- Readers23
- 23
Article Description
To determine mechanisms for pituitary neoplasia we used methylation-sensitive arbitrarily primed-PCR to isolate novel genes that are differentially methylated relative to normal pituitary. We report the isolation of a novel differentially methylated chromosome 22 CpG island-associated gene (C22orf3). Sodium bisulfite sequencing of pooled tumor cohorts, used in the isolation of this gene, showed that only a proportion of the adenomas within the pools were methylated; however, expression analysis by quantitative RT-PCR of individual adenoma irrespective of subtype showed the majority (30 of 38; 79%) failed to express this gene relative to normal pituitary. Sodium bisulfite sequencing of individual adenomas showed that 6 of 30 (20%) that failed to express pituitary tumor apoptosis gene (PTAG) were methylated; however, genetic change as determined by loss of heterozygosity and sequence analysis was not apparent in the remaining tumors that failed to express this gene. In those cases where the CpG island of these genes was methylated it was invariably associated with loss of transcript expression. Enforced expression of C22orf3 in AtT20 cells had no measurable effects on cell proliferation or viability; however, in response to bromocriptine challenge (10-40 μM) cells expressing this gene showed a significantly augmented apoptotic response as determined by both acridine orange staining and TUNEL labeling. The apoptotic response to bromocriptine challenge was inhibited in coincubation experiments with the general caspase inhibitor z-VAD-fmk. In addition, in time course experiments, direct measurement of active caspases by fluorochrome-labeled inhibition of caspases, showed an augmented increase (∼2.4 fold) in active caspases in response to bromocriptine challenge in cells expressing C22orf3 relative to those harboring an empty vector control. The pituitary tumor derivation and its role in apoptosis of this gene led us to assign the acronym PTAG to this gene and its protein product. The ability of cells, showing reduced expression of PTAG, to evade or show a blunted apoptotic response may underlie oncogenic transformation in both the pituitary and other tumor types.
Bibliographic Details
The Endocrine Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know