Endoplasmic reticulum stress prolongs GH-induced Janus kinase (JAK2)/signal transducer and activator of transcription (STAT5) signaling pathway
Molecular Endocrinology, ISSN: 0888-8809, Vol: 15, Issue: 9, Page: 1471-1483
2001
- 21Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef12
- Captures24
- Readers24
- 24
Article Description
The desensitization of the GH-induced Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) signaling pathway plays a crucial role in GH regulation of hepatic genes. Previous studies have demonstrated that the inactivation of the GH-induced JAK2/STAT5 pathway is regulated by protein translation and suppressors of cytokine signaling (SOCS). In this study we sought to explore the relationships between endoplasmic reticulum stress, GH-induced JAK2/STAT5 activity and SOCS expression. 1,2-bis(o-Aminophenoxy)ethane-N,N,N,N-tetraacetic acid (acetoxymethyl)ester (BAPTA-AM), used to provoke endoplasmic reticulum stress, caused a drastic inhibition of protein translation that correlated with the phosphorylation of the eukaryotic translation initiation factor 2α. Both GH and BAPTA-AM caused a rapid induction of the transcription factor C/EBP homology protein (CHOP) and an additive effect was observed with combined treatment, which suggests a regulatory role of GH on endoplasmic reticulum stress. Endoplasmic reticulum stress did not interfere with the rapid GH activation of STAT5 DNA binding activity. However, BAPTA-AM prolonged the DNA binding activity of STAT5 without affecting STAT5 or JAK2 protein levels. GH-induced phosphorylation of JAK2 and STAT5 DNA binding activity were prolonged in the presence of BAPTA-AM, suggesting that endoplasmic reticulum stress prevents the inactivation of STAT5 DNA binding activity by modulating the rate of JAK2/STAT5 dephosphorylation. Like BAPTA-AM, the endoplasmic reticulum stressors dithiothreitol and A23187 also prolonged the GH-induced STAT5 DNA binding activity. We were not able to correlate BAPTA-AM effects to the GH-dependent expression of sacs proteins or sacs mRNA, suggesting that endoplasmic reticulum stress modulates the rate of JAK2/STAT5 dephosphorylation through mechanisms other than inhibition of SOCS expression. This study indicates that cellular stress may modulate transcription through the JAK/STAT pathway.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0034830571&origin=inward; http://dx.doi.org/10.1210/mend.15.9.0699; http://www.ncbi.nlm.nih.gov/pubmed/11518796; https://academic.oup.com/mend/article/15/9/1471/2748000; http://press.endocrine.org/doi/10.1210/mend.15.9.0699; http://dx.doi.org/10.1210/me.15.9.1471; https://dx.doi.org/10.1210/mend.15.9.0699; https://dx.doi.org/10.1210/me.15.9.1471
The Endocrine Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know