Statistical properties of simple random-effects models for genetic heritability
Electronic Journal of Statistics, ISSN: 1935-7524, Vol: 12, Issue: 1, Page: 321-358
2018
- 7Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef6
- Captures33
- Readers33
- 33
Article Description
Random-effects models are a popular tool for analysing total narrow-sense heritability for quantitative phenotypes, on the basis of large-scale SNP data. Recently, there have been disputes over the validity of conclusions that may be drawn from such analysis. We derive some of the fundamental statistical properties of heritability estimates arising from these models, showing that the bias will generally be small. We show that the score function may be manipulated into a form that facilitates intelligible interpretations of the results. We go on to use this score function to explore the behavior of the model when certain key assumptions of the model are not satisfied — shared environment, measurement error, and genetic effects that are confined to a small subset of sites. The variance and bias depend crucially on the variance of certain functionals of the singular values of the genotype matrix. A useful baseline is the singular value distribution associated with genotypes that are completely independent — that is, with no linkage and no relatedness — for a given number of individuals and sites. We calculate the corresponding variance and bias for this setting.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85042145804&origin=inward; http://dx.doi.org/10.1214/17-ejs1386; http://www.ncbi.nlm.nih.gov/pubmed/30057658; https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-12/issue-1/Statistical-properties-of-simple-random-effects-models-for-genetic-heritability/10.1214/17-EJS1386.full; https://dx.doi.org/10.1214/17-ejs1386; https://projecteuclid.org/access-suspended
Institute of Mathematical Statistics
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know