PlumX Metrics
Embed PlumX Metrics

Large deviations of empirical measures of diffusions in weighted topologies

Electronic Journal of Probability, ISSN: 1083-6489, Vol: 25, Issue: none, Page: 1-52
2020
  • 3
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We consider large deviations of empirical measures of diffusion processes. In a first part, we present conditions to obtain a large deviations principle (LDP) for a precise class of unbounded functions. This provides an analogue to the standard Cramér condition in the context of diffusion processes, which turns out to be related to a spectral gap condition for a Witten–Schrödinger operator. Secondly, we study more precisely the properties of the Donsker–Varadhan rate functional associated with the LDP. We revisit and generalize some standard duality results as well as a more original decomposition of the rate functional with respect to the symmetric and antisymmetric parts of the dynamics. Finally, we apply our results to overdamped and underdamped Langevin dynamics, showing the applicability of our framework for degenerate diffusions in unbounded configuration spaces.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know