Behaviors of Metal-based Reactive Fragments Penetrating Spaced Aluminum Targets
Binggong Xuebao/Acta Armamentarii, ISSN: 1000-1093, Vol: 44, Issue: 8, Page: 2263-2272
2023
- 8Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
Article Description
Ballistic impact experiments are conducted on metal-based reactive fragments impacting spaced targets to investigate the post-target debris cloud and damage effect behaviors of the reactive fragments, and to reveal the mechanism of their penetration. By observing the perforation mode of spaced target and the action behavior of fragments, we combine the breakage theory of target penetration, energy conservation law, and the reactivation response behaviors of reactive fragments to analyze and discuss the behaviors of reactive fragments penetrating spacer aluminum targets. The results show that the front target is plugging, and the rear target mainly presents the composite mode of center penetration and debris impact due to the kinetic energy-chemical energy coupling damage of post-target debris cloud. With increasing impact velocity, the reactive of reactive fragments increases. The theoretical model of the reactive fragments' post-target debris cloud is established, and the evolution law of debris cloud is obtained. At different impact velocities, the unit debris kinetic energy is negatively correlated with unit reaction mass at the position of the critical through aperture.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171841355&origin=inward; http://dx.doi.org/10.12382/bgxb.2022.0232; https://dx.doi.org/10.12382/bgxb.2022.0232; http://www.co-journal.com/CN/10.12382/bgxb.2022.0232; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7547974&internal_id=7547974&from=elsevier
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know