LAR, liprin α and the regulation of active zone morphogenesis
Journal of Cell Science, ISSN: 0021-9533, Vol: 120, Issue: 21, Page: 3723-3728
2007
- 78Citations
- 133Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations78
- Citation Indexes78
- 78
- CrossRef63
- Captures133
- Readers133
- 133
Article Description
Active zones are protein-rich regions of neurons that act as sites of synaptic vesicle fusion and neurotransmitter release at the pre-synaptic terminus. Although the discovery that the receptor protein tyrosine phosphatase LAR and its cytoplasmic binding partner liprin α are essential for proper active zone formation is nearly a decade old, the underlying mechanisms are still poorly understood. Recent studies have identified a number of binding partners for both LAR and liprin α, several of which play key roles in active zone assembly. These include nidogen, dallylike and syndecan - extracellular ligands for LAR that regulate synapse morphogenesis. In addition, liprin-α-interacting proteins such as ERC2, RIM and the MALS/Veli-Cask-Mint1 complex cooperate to form a dense molecular scaffold at the active zone that is crucial for proper synaptic function. These studies allow us to propose testable models of LAR and liprin α function, and provide insights into the fundamental molecular mechanisms of synapse formation and stabilization.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=36549048922&origin=inward; http://dx.doi.org/10.1242/jcs.03491; http://www.ncbi.nlm.nih.gov/pubmed/17959628; https://journals.biologists.com/jcs/article/120/21/3723/29847/LAR-liprin-and-the-regulation-of-active-zone; https://dx.doi.org/10.1242/jcs.03491; https://jcs.biologists.org/content/120/21/3723
The Company of Biologists
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know