PlumX Metrics
Embed PlumX Metrics

E-cadherin regulates MAL-SRF-mediated transcription in epithelial cells

Journal of Cell Science, ISSN: 0021-9533, Vol: 123, Issue: 16, Page: 2803-2809
2010
  • 21
    Citations
  • 0
    Usage
  • 51
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Epithelial junctions are dynamically and functionally linked to the actin cytoskeleton, and their disassembly is a key event during physiological and pathological processes. We recently showed that epithelial disintegration facilitates transcriptional activation via Rac, G-actin, MAL (also known as MRTF) and serum response factor (SRF). Here, we investigate which specific component of the epithelial junction is essential for this MAL-SRF-mediated transcription. The Ca-dependent dissociation of polarised epithelial cells depleted of ZO proteins - which form adherens junctions (AJs) but completely lack tight junctions (TJs) - fully activated SRF. By contrast, AGS gastric adenocarcinoma epithelial cells, which form TJs but are deficient in E-cadherin, and therefore also in AJs, failed to activate SRF. The introduction of wild-type E-cadherin in AGS cells restored AJ formation and MAL-SRF inducibility. To gain further insight into the membrane-proximal signalling, AGS cells were stably transfected with E-cadherin-α-catenin fusions. Despite restored formation of cell-cell contacts containing the nectin-afadin complex and p120-catenin, these cells did not activate SRF upon junction dissociation, suggesting that signal transmission depends on the C-terminal tail of E-cadherin. We conclude that the dissociation of intercellular E-cadherin interactions from AJs, and signals originating from the C-terminal region covering the β-catenin-binding site of E-cadherin, are essential for transcriptional activation via Rac, MAL and SRF, whereas TJs are not involved.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know