The structural basis of intraflagellar transport at a glance
Journal of Cell Science, ISSN: 1477-9137, Vol: 134, Issue: 12
2021
- 33Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations33
- Citation Indexes33
- 33
- Captures37
- Readers37
- 37
Article Description
The intraflagellar transport (IFT) system is a remarkable molecular machine used by cells to assemble and maintain the cilium, a long organelle extending from eukaryotic cells that gives rise to motility, sensing and signaling. IFT plays a critical role in building the cilium by shuttling structural components and signaling receptors between the ciliary base and tip. To provide effective transport, IFT-A and IFT-B adaptor protein complexes assemble into highly repetitive polymers, called IFT trains, that are powered by the motors kinesin-2 and IFTdynein to move bidirectionally along the microtubules. This dynamic system must be precisely regulated to shuttle different cargo proteins between the ciliary tip and base. In this Cell Science at a Glance article and the accompanying poster, we discuss the current structural and mechanistic understanding of IFT trains and how they function as macromolecular machines to assemble the structure of the cilium.
Bibliographic Details
The Company of Biologists
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know